FeatureWrap
Import FeatureWrap
To import FeatureWrap model use:
>>> from TINTOlib.featureWrap import FeatureWrap
>>> model = FeatureWrap()
Hyperparameters & Configuration
When creating the FeatureWrap
class, some parameters can be modified. The parameters are:
Parameters |
Description |
Default value |
Valid values |
---|---|---|---|
|
The type of problem, this will define how the images are grouped. |
‘supervised’ |
[‘supervised’, ‘unsupervised’, ‘regression’] |
|
The width and height of the final image, in pixels (rows x columns). |
[8,8] |
[int, int] |
|
The number of bins or intervals used for grouping numeric data |
10 |
int |
|
Multiplication factor that determines the size of the saved image relative to the original size. Values greater than 1 will increase the size of the saved image proportionally. |
1 |
int |
|
Show in terminal the execution. |
False |
[True, False] |
Code example:
>>> model = FeatureWrap(size=[10,10], bins=20)
All the parameters that aren’t expecifically setted will have their default values.
Functions
FeatureWrap has the following functions:
Function |
Description |
Output |
---|---|---|
|
Allows to save the defined parameters (scale, fea_dist_method, image_dist_method….). |
.pkl file with the configuration |
|
Load FeatureWrap configuration previously saved with
|
|
|
Generate one image per instance and group by class in different folder
|
Folders with synthetic images |
Citation
Paper: https://doi.org/10.1007/978-3-319-70139-4_87
Code Repository: